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Aeroelastic Tailoring of Composite Wings Exhibiting Nonclassical
Effects and Carrying External Stores

Frank H. Gern ¤ and Liviu Librescu†

Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0219

Structural and aeroelastic tailoring applied to advanced straight and swept aircraft wings carrying external
stores is addressed. The wing structure is modeled as a laminatedcomposite plate exhibiting � exibility in transverse
shear and warping restraint effects. The equationsof motion and boundary conditions are obtained via Hamilton’s
variational principle and application of generalized function theory. For a comprehensive representation of the
stores, their static weights and inertia terms are considered.Three-dimensionalmodi� ed strip theory aerodynamics
is employed,and the obtainedeigenvalue/boundaryvalue problems are solved using the extended Galerkin method.
The model is used to investigate the implications of external stores and ply angle orientation on divergence, free
vibration, and � utter. Within the context of aeroelastic tailoring, the in� uence of external stores attached to the
wing structure has to be considered during the preliminary aircraft design phases.

Nomenclature
AR = wing aspect ratio, 2l / c
a0 = sectional lift-curve slope
b = wing semichord length, c/2
C(k) = Theodorsen function, F(k) + iG(k)
c = wing chord length measured perpendicular to the

reference axis
E p = distance between center of gravity of store

and wing elastic axis, positive aft
f = frequency of oscillation
f2 , g2 = two-dimensional displacement measures [Eq. (3b)]
G12, G13 = in-plane shear modulus, transverse shear modulus
g = gravity acceleration
h = plunging displacement,positive upward
K p = pitching radius of gyration of the store about its

center of gravity
k = reduced frequency, x b / Vn = x b / (V cos K )
L = sectional lift, positive upward
l = wing semispan measured along the reference axis
M = sectional aerodynamic torque about wing elastic

axis, positive nose up
Q̄ i j = modi� ed components of the elasticity tensor
qn = component of the dynamic pressure normal to the

reference axis, q V 2
n / 2

R = transverse shear � exibility parameter, E1 / G13

Ui = components of the three-dimensionaldisplacement
vector [Eqs. (3)]

V , Vn = airstream velocity and its component normal to the
reference axis

x0 = elastic axis position measured from the reference
axis, positive aft

x1, x2, x3 = chordwise, spanwise, and transverse coordinate
normal to the midplane of the wing, respectively

d , d D = variational operator, Dirac operator
e = E p / c
g , g w = nondimensionalspanwise location of wing store,

x2 / l
h , h 0 = elastic twist angle, prescribed rigid wing angle of

attack, positive nose up
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K = sweep angle of the reference axis, positive
for swept back

k , k F = speed parameter, V / b x h ; � utter speed parameter,
VF / b x h

l T , l w = m tipstore / mwing , mwingstore / mwing

X , X F = frequency parameter, x / x h ; � utter frequency
parameter, x F / x h

x = circular frequency of oscillation
x h = uncoupled circular eigenfrequencyin plunging for

ply angle } equals 0 deg

Subscripts and Superscript

S, W , T = stores, wing, tipstore
, 2 = d( )/ dx2
0 = d( )/ dg

Introduction

B ECAUSE modern civil and military aircraft wings are very
often designed to carry external stores, external stores have

gained special importance in the consideration of wing aeroelas-
ticity. In the case of transport aircraft, these are mostly underwing
carried stores, such as large and heavy engines and fuel tanks, or tip
stores, such as winglets. Experimental investigation of the winglet
in� uence on aeroelastic behavior revealed that most of the detri-
mental effects are due to the pure winglet mass and are not due to
aerodynamic interactions.1 Store attachments to � ghter aircraft in-
corporate a wide variety of missile con� gurations, thus leading to
literally hundreds of different store combinations. Very often, the
storesexhibitdramaticchangesin mass and inertiapropertiesduring
one single mission due to the launch of missiles.2

The tremendous variety of possible store con� gurations dramat-
ically in� uences static and dynamic aeroelastic behavior of aircraft
wings, and the study of this problem has received prominence with
the variablesweep � ghter aircraft.3,4 Because it is known thatpylon-
mounted stores strongly in� uencedynamic wing characteristics,the
store pitching modes are of special importance from an aeroelastic
point of view.5 With store pitching modes being in the proximity
of the wing’s fundamental bending frequency, a critical aeroelastic
coupling of the modes may occur, commonly referred to as wing-
with-stores � utter.

As a result, for a successful design of the next generations of
aerospace vehicles, and to eliminate the danger of the occurrence
of any aeroelastic instability jeopardizing their imposed missions,
it is imperative to have a perfect knowledge of the circumstances
yielding the most critical aeroelastic instability. Toward this end,
as a necessary requirement, modeling of the � ight vehicle should
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include the effect of distributed wing and tip stores on a composite
wing.

The possibilities of bene� cially tailoring the aeroelastic proper-
ties of wing structures by the employment of composite materials
have been pointed out by recognized aeroelasticians6,7 and were
demonstrated by the development of the Grumman X-29 forward-
swept wing aircraft.As shown in Refs. 8 and 9, nonclassicaland of-
ten detrimental effects like warping inhibition and transverse shear
� exibility of constituent materials are important parameters that
have to be included in the aeroelastic model.

Structural Modeling
To investigatetheeffectsofwing-mountedstoresonaeroelasticity

of advanced aircraft wings, a comprehensive structural model has
been developed.Based on the concept of a shear deformable plate–

beammodel, thewing structureis idealizedasa laminatedcomposite
plate, each constituent layer featuringdifferentply angles, material,
and thickness properties.The total number of the constituent layers
is denoted by N . The reference plane of the composite structure
is selected to coincide with the plane interface between the two
contiguous layers r and r + 1 (1 ·r · N ). Its points are referred to
a Cartesian system of in-plane coordinates (x1 , x2). The coordinate
x3 is normal to the plane (x1 , x2), with its positive direction upward.
The x1 and x2 coordinatesare referred to as chordwise and spanwise
coordinates,respectively,whereas the reference plane is de� ned by
x3 =0 (Fig. 1).

The equations of motion as well as boundary conditions are
obtained via Hamilton’s variational principle and application of
generalized function theory to consider the spanwise location and
properties of the attached stores exactly. To achieve a realistic rep-
resentationof the store in� uence on static and dynamic behavior of
the system, static weight and inertia of the attached stores are mod-
eled, yielding the energy functional of a composite wing carrying
external stores:

J =

Z t1

t0

(TW ¡ VW + TS ¡ VS + WNC ) dt (1)

In Eq. (1) T and Vdenote the kinetic and potential energy of
wing W and external stores S, respectively. The work done by the
nonconservative forces, WNC , is obtained from the aerodynamic
forces.From the stationarycondition d J =0, consistentwith Eq. (1)
and adopting the Einstein summation convention, one obtains

d J = 0 =

Z t1

t0

dt

»³
¡

Z

s

r i j d Ui, j d s +
Z

s
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3

´
dx2

¼

| {z }
external stores

(2)

In Eq. (2), the superposeddots denote time derivatives.The terms
labeled with a tilde represent prescribed quantities, and the index
s identi� es the af� liation of the respective quantity to the external
stores. Hi represents the componentof the body force vector H(per
unit mass), whereas r i j denotes the respective component of the
stress tensor. The three-dimensional displacement components are
given by

U1 = x3h (x2; t ) (3a)

U2 = u2(x2; t ) + x3[ f2(x2; t ) + x1g2(x2; t)] (3b)

U3 = h(x2; t) ¡ (x1 ¡ x0)h (x2; t ) (3c)

Fig. 1 Geometry of the swept-compositewing carrying external stores.

where, h (x2; t ) is the elastic twist angle of a wing of rigid cross
sections, whereas h(x2; t ) is the vertical displacement (positive up-
ward) of the respective cross section measured at the elastic axis
and located at x1 = x0[ ´ x0(x2)]. See Refs. 10 and 11 for a detailed
derivation of the three-dimensionaldisplacement components.

For f2 = ¡ h,2 ¡ (x0 h ),2 and g2 = h ,2 , it results that c 13 = c 23 =0.
This is consistentwith the traditionalassumptionof an in� nite stiff-
ness of the wing structure in transverse shear (Kirchhoff’s theory).

In the case of a straightwing, the pitchingangles h (s) of the stores
coincide with the wing pitching angle h . When considering swept
wings of a sweep angle K , the reference coordinate system is being
rotated with the wing by the sweep angle K (Fig. 1). However, in
this case, note that the stores are always kept aligned parallel to the
air� ow. As a result, the three-dimensionaldisplacementquantitiesof
the stores have to be transformedto the rotated referencecoordinate

system to express the store inertia properties in a correct manner.
This transformationyields

U (s)
1 = x3 h cos K ¡ u2 sin K ¡ x3( f2 + x1g2) sin K (4a)

U (s)
2 = x3 h sin K + u2 cos K + x3( f2 + x1g2) cos K (4b)

U (s)
3 = h ¡ (x ¡ x0)[h cos K ¡ f2 sin K ¡ x1g2 sin K ] (4c)

By employingthedisplacementcomponentsfromEqs. (3) and (4)
and performing the indicated mathematical operations, the explicit
form of Eq. (2) for the case of a composite aircraft wing carrying
external stores is
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d J = 0 =

Z t1

t0

dt

± Z l
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[A1 d u2 + A2 d f2 + A3 d g2 + ( A4 ¡ M) d h + ( A5 + L) d h]dx2 + A6
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p ḧ sin K
¤
d g2

+
£
¡ K 2(s)

p f̈2 sin K cos K ¡ x1 K 2(s)
p g̈2 sin K cos K +

¡
x2

3 + K 2(s)
p cos2 K

¢
¨h

+ E (s)
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(5)

where, E (s)
p is the distancebetween the center of gravity of the store

and the wing elastic axis and K (s)
p is the pitching radius of gyration

of the store about its center of gravity. The coef� cients A1 – A6 are
displayed in Refs. 10 and 11 and, therefore, are not recorded here.

For the sake of completeness, Eq. (5) also displays the virtual
work done by the nonconservative aerodynamic forces acting on
the external stores. However, as it has been pointed out by Turner,12

caseswhere store aerodynamicssigni� cantly in� uence the aeroelas-
tic characteristicsof the con� gurationare very rare. Therefore,store
aerodynamicswill not be consideredin the followingdevelopments.

By collecting the terms associated with the respective variations
d u2 , d f2, d g2, d h , and d h, and having in view that these variations
have to be arbitraryand independent,Eq. (5) yields the equationsof
motion as well as the boundaryconditions.From the stationarycon-
dition d J = 0, which concernseach instant belonging to the interval
[t0 , t1], the equations of motion result as
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It should be stressed that these equations of motion, obtained
from a plate–beam model, are similar to the ones obtained for thin-
walled beam models.13 Because only the stiffness quantities are
affected by the physical realization of the structure, all structural
con� gurations, including plate–beam models, thin-walled beams,
as well as the implementation of different types of stiffeners in the
wing, can be investigated using the same set of equations. This
was conjectured by several authors.14,15 The modi� ed plate–beam
models (so-calledbox-beammodels) employedby these authors are
an intrinsic feature of the present structural model.

In addition, the geometrical and statical boundary conditions at
the wing root and tip are obtained. For a cantilevered wing, the
boundary conditions at the root (x2 = 0) are purely geometricaland
expressed as

u2 = ũ2 (7a)

f2 = f̃2 (7b)

g2 = g̃2 (7c)

h = ˜h (7d)

h = h̃ (7e)

In the case of a clean wing tip, that is, no tip store, the boundary
conditions at the wing tip (x2 = l ) are purely statical:

d u2: T (0,0)
22 = T̃ (0,0)

22 (8a)

d f2: T (0,1)
22 = T̃ (0,1)

22 (8b)

d g2: T (1,1)
22 = T̃ 1,1)

22 (8c)

d h : T (0,1)
12 ¡ T (1,0)

23 = T̃ (0,1)
12 ¡ T̃ (1,0)

23 (8d)

d h: T (0, 0)
23 = T̃ (0, 0)

23 (8e)
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When considering a store located at the wing tip, the boundary
conditions at x2 = l change to kinetic ones, thus taking into account
the mass, inertia properties, and aerodynamics of the tip store:

d u2: T (0,0)
22 = ¡ m(T )(ü2 + x3 f̈2 + x1x3 g̈2) (9a)
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d h: T (0, 0)
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Equations (6–9) represent the equations governing the aeroelas-
tic equilibrium of advanced composite aircraft wings laminated of
anisotropic layers and exhibiting transverse shear � exibility and
warping inhibition. In addition, they include arbitrarily distributed
external stores in the wing’s spanwise and chordwise directions, as
well as the aerodynamics of the stores. These equations, expressed
in terms of the unknowndisplacementquantitiesu2(x2; t ), f2(x2; t),
g2(x2; t ), h (x2; t ), and h(x2; t ), yield a 10-order governing system
of ordinary differential equations.

On discarding the in� uence of the in-plane components of body
forces F (0,0)

2 , as well as in-plane rotatory inertia terms, that is, terms
I (0,0) ü2, I (0,1) f̈2, and I (1,1) g̈2 , thedisplacementquantityu2(x2; t) can
be expressed in terms of f2(x2; t ), g2(x2; t ), h (x2; t ), and h(x2; t),
and, thus, be eliminated from the system. By this way, the system
can be equivalentlyreduced to an eighth-orderdifferential equation
system in terms of the unknowns f2(x2; t), g2(x2; t ), h (x2; t ), and
h(x2; t ).

Constitutive Equations
The constitutiveequations relating the generalizedstress couples

T (m,n)
i j with the strain measures have been obtained in Ref. 10. To

establish the study of the effects of external stores within the con-
text of aeroelastic tailoring, the composite wing is chosen to be
fabricatedof a � nite number N of homogeneous layers. It is further
assumed that the material of each layer is linearly elastic and that
the bonding between the layers is perfect. The three-dimensional
constitutive equations for a generally orthotropic elastic material
can be expressed as

2

6666664
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r 13

r 12

3

7777775
=

2
666666664

Q̄11 Q̄12 Q̄13 0 0 Q̄16
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0 0 0 Q̄44 Q̄45 0

0 0 0 Q̄45 Q̄55 0

Q̄16 Q̄26 Q̄36 0 0 Q̄66

3
777777775

2

6666664

e 11

e 22

e 33

c 23

c 13

c 12

3

7777775
(10)

where Q̄ i j are the transformed elastic coef� cients associated with
the kth layer in the global coordinate system of the wing structure,

and c i j =2e i j , where i 6= j and e i j are the components of the strain
tensor.

Numerical Solution of the Static Aeroelastic System
As stated, the extended Galerkin method has been applied for a

numerical solution of the problem. The displacement � eld is repre-
sented as the sum of a � nite number of mode shape functions as

[ f2( g ), g2( g ), h (g ), h( g )]T =
nX

j = 1

[F j , G j , T j , H j ]T ¢ g j (11)

where g is the nondimensional spanwise coordinate (g = x2 / l),
whereas the constant factors F j , G j , T j , and H j are the modal
amplitudes.

To establish trends, strip theory aerodynamics have been em-
ployed. However, note that application of the extended Galerkin
method allows a three-dimensional integration of the aerodynamic
forces and moments along the wing span. Therefore, the sectional
lift-curve slope and aerodynamic center remain arbitrary and may
vary from section to section.

For the static case, the aerodynamic terms Land M representing
the sectionallift and aerodynamictorsionalmoment16 are expressed
as

L( g ) = qnca0 h eff (12a)

M( g ) = qncea0h eff (12b)

where qn = q 0V 2
n / 2 =q cos2 K is the dynamic pressure component

normal to the leading edge and a0 ´ 2 p AR/ (AR + 4 cos K ) is the
lift-curveslope coef� cient corrected to include the effects of a � nite
wing span and the wing sweep angle K . In Eq. (12), h eff is the
effective sectional angle of attack given by

h eff = h 0 + h ¡
1
l

@h

@g
tan K (13)

With h 0 denoting the angle of attack of the rigid-wing structure,
Eq. (13) including aerodynamic bending/twist coupling describes
the well-known wash-in and wash-out effects of swept-forward
and swept-back wing con� gurations, respectively. By replacing
Eqs. (11–13) into Eq. (5), an inhomogeneous matrix equation de-
scribing the static aeroelastic response of the wing is obtained:

[A] ¢ [s] = [r] (14)

In the static case, the matrix A is composed of the (real) stiffness
matrix of the wing but contains also the (real) aerodynamic in� u-
ence quantities in terms of the dynamic pressure qn , whereas
s represents the solution vector with s =[F1 , . . . , Fn , G1 , . . . ,
Gn , T1, . . . , Tn , H1 , . . . , Hn]T . The right-handvector r incorporates
the inhomogeneouspart of the aerodynamic forces associated with
the angle of attack of the rigid wing and the in� uenceof the external
stores.

To obtain the divergence pressure, the determinant of matrix A
has to be calculated, yielding a characteristic polynomial in qn .
The smallest positive value of qn ful� lling the condition det A = 0
represents the divergence pressure (qn )div . Because for the static
case, there is no contribution of the external stores to the matrix
A, it becomes now evident that the in� uence of the stores on the
divergence speed of the wing is immaterial. Experimental results
obtained by Runyan and Watkins17 reveal an identical behavior.

Numerical Solution of the Dynamic Aeroelastic System
For simulation of the dynamic aeroelastic system, the unknown

functions are represented as

[ f2( g ; t ), g2( g ; t), h ( g ; t ), h( g ; t)]T

=
nX

j = 1

[F j , G j , T j , H j ]T ¢ g j ¢ ei x t (15)
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For the dynamiccase, the aerodynamictermsLand M represent-
ing the sectionallift and aerodynamictorsionalmoment16 associated
with an incompressible � ow� eld are expressed as

L( g , t ) = ¡ p q x 2b3

»
h

b
Lhh +

1
l

@h

@g
Lhh 0 + h Lhh + b

1
l

@h

@g
Lh h 0

¼

(16)

M( g , t ) = p q x 2b4

»
h

b
Mh h +

1
l

@h

@g
Mh h 0 + h M h h + b

1
l

@h

@g
M h h 0

¼

(17)

InEqs. (16) and (17), Lhh , Lhh 0 , . . . , M h h 0 representtheaerodynamic
coef� cients.16

For the TheodorsenfunctionC(k), the approximation18 was used,
namely,

C(k) = F(k) + iG(k)

=
0.021573 + 0.210400k + 0.512607k2 + 0.500502k3

0.021508 + 0.251239k + 1.035378k2 + k3

¡ i
0.001995 + 0.327214k + 0.122397k2 + 0.000146k3

0.089318 + 0.934530k + 2.481481k2 + k3

(18)

where k is

k = x b/ Vn = x b/ V cos K (19)

This representation� nally leads to a complexeigenvalueproblem
expressed in matrix form as

[A] ¡ x 2[B] = 0 (20)

where A is the (real) stiffness matrix of the wing and B is the (com-
plex) matrix representing the inertia terms of wing and external
stores as well as the complex aerodynamicparameters of the wing.
The realpartof thecomplexvaluedquantity x representsthecircular
frequency of the oscillation, whereas its imaginary part constitutes
the damping factor d .

The implemented solutionmethodologyis based on the inversion
of thecomplexB andsubsequentcalculationof complexeigenvalues
and eigenvectors of the obtained system matrix AB ¡ 1 . The � utter
speed is calculated in a fast converging iteration process rendering
zero the imaginary (damping) part of the complex eigenvalues.

Validation
To verify the accuracy of the � utter analysis, a number of com-

parisons for several test cases were conducted.The � rst comparison
was made with Goland’s cantilevered wing of AR =6.67 as given
in Ref. 19 and the subsequently appended correction of the � utter
results in Ref. 20. The results reveal that the predictions for � ut-
ter speed and � utter frequency provided by the present approach,
namely, 493.6 km/h and 12.02 Hz, are in excellent agreement with
Goland’s exact results (494 km/h and 11.25 Hz).

As another test case, the example of a straight aircraft wing of
AR = 6.16 with attached tip weights, as given in Ref. 20, was in-
vestigated. In the calculations, two different chordwise positions
of the center of gravity of the tip store were considered, namely,
e T = E (T )

p /c =0.0 (case I) and e T =0.1 (case II). Note that the orig-
inal � utter investigationby Goland and Luke also included the free-
body motionof the rigid fuselage,which is not subject of the present
calculations. Nevertheless, the prediction of � utter speed and fre-
quencyof the � rst torsional mode for cases I and II is very accurate.

In both cases, � utter occurs in the classical way as binary wing
bending/torsion � utter due to frequency coalescence and vanishing
aerodynamic damping of the � rst torsional mode at a � ight speed
of 1055 km/h. In Refs. 15 and 21, it was observed that the � rst
bending branch interacts with the rigid-body mode and � utters at
an even lower speed (994 km/h). Because the free-body motion of
the fuselage was discarded in this investigation, there is no such

interactionand, as a consequence,the � rst torsionalmode yields the
lowest � utter speed.

In the present calculations, the warping inhibition of the can-
tilevered wing structure is taken into account. For this reason, � ut-
ter of the second bending mode, which was observed by Housner
and Stein15 to be the most critical mode of instability (943 km/h),
occurs only at very high air speeds.21 The inclusion of the warping
terms does not in� uence the stability behavior of the � rst bending
and torsional modes.

Numerical Illustrations
To study the effects of external stores within the context of aero-

elastic tailoring,the wing structureis consideredto be manufactured
of agraphite–epoxycompositematerial. In this context,theplyangle
} represents the counterclockwiseangle of rotation of the laminate
with respect to the x1 axis of the wing. For a single-layercomposite
wing, the material properties are given in Table 1.

The effect of the ply angle } on the divergence speed is shown in
Fig. 2 for a swept-back, swept-forward, and straight wing. Figure 2
shows thenormalizeddivergencespeed(qn )D / (qn ) ¤

D vs theplyangle
} , where (qn) ¤

D = (qn)D j K = } = 0 . It can be seen that, with increasing
forward sweep, the range of ply angles for which divergence is
not critical is decreased. Figure 2 also highlights the effect of the
transverse shear � exibility of the material.

Free vibration and � utter of the wing are examined for different
combinationsof wing and tip stores whose nondimensionalproper-
ties are given in Table 1.

The free vibration behavior of wings carrying external stores and
exhibiting nonclassical effects such as transverse shear � exibility
and warping inhibition can be obtained as a byproduct of the dy-
namic analysis described in the preceding section. For this purpose,
the air� ow density is set equal to zero, rendering the inertia matrix
B real and, therefore, stating a self-adjoint eigensystemwith purely
real eigenvalues. Figure 3 shows the in� uence of warping restraint
on the free vibration characteristicsof the wing.

Table 1 Structural and material properties
of wing and external stores

Parameter Value

E1 30¢ 106 psi
E2 0.75¢ 106 psi
G12 0.45¢ 106 psi
G13 0.37¢ 106 psi
R = E1 / G13 81.081
m 12 0.25
q 14.3 £ 106 lb¢ s2 /in.4

l W = m(wingstore) / m(wing) 0.3
l T = m(tipstore) / m(wing) 0.1
e W = E (wingstore)

p / c ¡ 0.4
e T = E (tipstore)

p / c ¡ 0.4
g W = x (wingstore)

2 / l 0.5

Fig. 2 Normalized divergence speed vs plyangle for swept and straight
wings (R = 81, graphite epoxy and R ! 0, Kirchhoff’s theory).
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Fig. 3 In� uence ofwarping restraint on the three lowest eigenfrequen-
cies fora straightwing (FW = free warping andWR = warpingrestraint).

Fig. 4 In� uence of external stores on the three lowest eigenfrequencies
for a straight wing.

Fig. 5 In� uence of external stores on the three lowest eigenfrequencies
for a swept-back wing ( K = 45 deg).

As shown in Fig. 4, vibration frequencies are lowered due to an
increase of the generalized mass of the system by attaching exter-
nal stores. However, because of the chordwise offset of the center
of gravity of the stores, the symmetry of the vibration behavior
with respect to the ply angle is destroyed. As can also be inferred
from Fig. 4, the node lines of the higher-order vibrational modes
are shifted with respect to changes in the ply angle orientation, as
well as by increasing the generalized mass.11 Figure 5 shows the
free vibration behavior for a 45-deg swept-back wing of the same
structural con� guration. The trends shown in Figs. 4 and 5 are con-
sistent with the ones experimentally and theoretically obtained by
Lee and Lee.22

For a nonzeroair� owdensity,matrix B becomescomplex,render-
ing the eigenvaluesof the system complex quantities. Figures 6 and
7 show � utter speed and � utter frequency, respectively, of a clean
wing vs the ply angle } for differentsweep angles K . As it is shown,

Fig. 6 Effect of ply angle ’ and sweep angle K on � utter speed pa-
rameter ¸F = VF/b!h including transverse shear � exibility.

Fig. 7 Effect of ply angle ’ and sweep angle K on � utter frequency
parameter X F = !F/!h including transverse shear � exibility.

Fig. 8 Effect of ply angle ’ on � utter speed parameter ¸F = VF/b!h
for a straight wing (in� uence of external stores).

the maximum � utter speed of the wing is obtained for ply angles in
the vicinityof 30 deg and is decreasingrapidlyby approaching0 deg
as well as 90 deg. This trend is in perfect agreement with results
obtained by Housner and Stein15 using a � nite difference method.

To highlightthe effect of the transverseshear � exibilityof the ma-
terial on the � utter behavior of the wing, Figs. 6 and 7 also show the
results obtained for the assumption of a transversely rigid material
(Kirchhoff theory, R ! 0). As can be seen, neglecting the trans-
verse shear � exibility leads to an overestimation of � utter speeds
and � utter frequencies for all ply-angle orientations.

The in� uence of different combinationsof wing and tip stores on
� utter speed and frequency is shown in Figs. 8 and 9, respectively.
Depending on the ply angle orientation, the presence of external
stores may lead to a decrease or increase of the � utter speed with
respect to the clean wing. Moreover, as can be seen from Figs. 8 and
9, changing the con� guration of the external stores may even lead
to a change in the critical � utter mode for certain ply angles. For the
structural con� guration shown in Figs. 8 and 9, the attachment of a
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Fig. 9 Effect of ply angle ’ on � utter frequency parameter X F =
!F/!h for a straight wing (in� uence of external stores).

Fig. 10 Imaginary (damping) part ± of the complex eigenvalues of
modes 2 and 3 vs � ight speed parameter ¸ = V/b!h at ply angle orienta-
tions near the discontinuity of the � utter boundary for a straight wing
carrying a tip store.

tip store rendersmode 3 to become the more critical � utter mode for
ply angles between 6 and 20 deg, leading to a discontinuity of the
� utterboundaryin thevicinityof theseplyangles.Asa consequence,
the � utter frequency jumps to the much higher frequency range
of mode 3, whereas for all other ply angles and external stores
combinations,mode 2 is the most critical � utter mode.

The discontinuity of the � utter boundary in the vicinity of a ply
angleof } =6 deg can be explainedby the existenceof a hump mode
(mode3) for thewingcarryinga tip store(Fig. 10). The critical� utter
mode changes from mode 2 to mode 3 as } is increased from 5 to
6 deg due a change in sign (from minus to plus) of the imaginary
(damping) part d of the complex eigenvalue of mode 3 for a � ight
speed parameter of k = 19.5. A similar variation of the � utter speed
vs the laminate ply angle was observed by Housner and Stein.15

Notice that, for } =6 deg, mode 2 of the clean wing undergoes
instability at a lower speed than mode 2 of the wing carrying a tip
store. Nevertheless, for the wing with tip store, instability of mode
3 occurs at an even lower � ight speed.

Note that this discontinuityof the � utter boundary occurs due to
a change of the external stores con� guration of the wing. As men-
tioned in the Introduction,such changesmay occurduring � ight, for
example, due to the launching of missiles or jettisoning of external
tanks. Therefore, to it is very important to consider the possibilityof
different combinations of external stores attached to the wing also
during ply-angle optimization for aeroelastic tailoring.

Figures 11 and 12 indicate that the observed discontinuity in the
� utter speed does not occur for a 45-deg swept-back wing. The
reason for this behavior is that, for the straight wing, the pitching
modeof the tip storecoupleswith mode3 of thewing, thusproducing
the observed hump mode. To keep the stores aligned parallel to the
air� ow for the 45-deg swept-back wing, the store inertia properties
are being transformed into the wing coordinate system [Eqs. (4a–

4c)]. As a result, the interaction of the store pitch with mode 3
becomes weaker, causing the hump mode to disappear. Therefore,

Fig. 11 Effect of ply angle ’ on � utter speed parameter ¸F = VF/b!h
for a 45-deg swept-back wing (in� uence of external stores).

Fig. 12 Effect of ply angle ’ on � utter frequency parameter X F =
!F/!h for a 45-deg swept-back wing (in� uence of external stores).

in this case, mode 2 yields the most critical � utter conditions for all
ply-angle orientations.

Conclusions
A well-encompassing structural model of aircraft wings com-

posedof advancedcompositeanisotropicmaterialsexhibitingtrans-
verse shear � exibility and warping inhibition as well as incorporat-
ing arbitrarily distributed stores was developed.This model reveals
its ef� ciency in approachingthe static and dynamic aeroelasticityof
complexwing/store con� gurations.Results obtained for Goland’s19

and for Goland and Luke’s20 wings via extendedGalerkin’s method
showvery goodagreementwith solutionsgivenbyotherauthorsand
obtained via completely different approaches to the problem, such
as analytical solutions and � nite difference or � nite element meth-
ods. The capabilityof the model to predictaccurately� utter and free
vibrationbehaviorofwings carryingexternalstores is underlinedby
comparison with theoretical and experimental results for standard
unswept metallic wings and composite wings, respectively.

The assumption of a nonshear deformable wing structure (R =
E1 / G13 ! 0) overestimates divergence and � utter speeds, as well
as � utter frequencies. For this reason, to obtain reliable results for
static and dynamic aeroelasticity of advanced composite aircraft
wings, transverse shear � exibility has to be taken into account. Be-
cause wing divergenceas a phenomenon is only in� uenced by wing
stiffness parameters, the effect of external stores on the divergence
speed has been shown to become immaterial.

The implications of external stores on � utter speed of aeroelas-
tically tailored composite wings can be very complex, depending
on the wing/store con� guration, because they can be of bene� cial
or detrimental nature. It has been shown that different store com-
binations may lead to changes of the critical � utter modes and to
discontinuities in the � utter boundary for certain ply angle orien-
tations. In the observed case, increasing the wing sweep from 0 to
45 deg reduces the coupling of the store pitching mode with wing
mode 3. As a result, the hump mode causing a discontinuity in the
critical � utter speed for the straight wing disappears for the 45-deg
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swept-backwing.Therefore,to identifythecritical� utterconditions
for a composite aircraft wing carrying external stores, it becomes
imperative to consider different store con� gurations already in the
preliminary design stages.
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