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Aeroelastic Tailoring of Composite Wings Exhibiting Nonclassical
Effects and Carrying External Stores

Frank H. Gern* and Liviu Librescu®
Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0219

Structural and aeroelastic tailoring applied to advanced straight and swept aircraft wings carrying external
stores is addressed. The wing structure is modeled as a laminated composite plate exhibiting flexibility in transverse
shear and warping restraint effects. The equations of motion and boundary conditions are obtained via Hamilton’s
variational principle and application of generalized function theory. For a comprehensive representation of the
stores, their static weights and inertia terms are considered. Three-dimensional modified strip theory aerodynamics
isemployed, and the obtained eigenvalue/boundary value problems are solved using the extended Galerkin method.
The model is used to investigate the implications of external stores and ply angle orientation on divergence, free
vibration, and flutter. Within the context of aeroelastic tailoring, the influence of external stores attached to the
wing structure has to be considered during the preliminary aircraft design phases.

Nomenclature

R = wing aspect ratio, 2//c

ay = sectional lift-curve slope

b = wing semichord length, ¢/2

C(k) = Theodorsen function, F (k) +iG(k)

c = wing chord length measured perpendicular to the
reference axis

E, = distance between center of gravity of store
and wing elastic axis, positive aft

f = frequency of oscillation

1 & = two-dimensional displacement measures [Eq. (3b)]

G5, G;3 = in-plane shear modulus, transverse shear modulus

g = gravity acceleration

h = plunging displacement, positive upward

K, = pitching radius of gyration of the store about its
center of gravity

k = reduced frequency, wb/ V, = wb/(V cos A)

L = sectional lift, positive upward

[ = wing semispan measured along the reference axis

M = sectional aerodynamic torque about wing elastic
axis, positive nose up

0 = modified components of the elasticity tensor

qn = component of the dynamic pressure normal to the
reference axis, pV?2/2

R = transverse shear flexibility parameter, E,/ G 3

U; = components of the three-dimensional displacement
vector [Egs. (3)]

V,V, = airstream velocity and its component normal to the
reference axis

Xo = elastic axis position measured from the reference
axis, positive aft

X1, X2, X3 = chordwise, spanwise, and transverse coordinate
normal to the midplane of the wing, respectively

S, 6p = variational operator, Dirac operator

€ =E,/c

n, My = nondimensional spanwise location of wing store,
X,/ 1

0, 6 = elastic twist angle, prescribed rigid wing angle of

attack, positive nose up
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A = sweep angle of the reference axis, positive
for swept back

A, Ap = speed parameter, V/bawj,; flutter speed parameter,
Vp/ba)h

Hry Hy = mlipstore/mwinga mwingstore/mwing

Q, Qp = frequency parameter, o/ @,; flutter frequency
parameter, ®r/ w,

10} = circular frequency of oscillation

oy, = uncoupled circular eigenfrequencyin plunging for
ply angle ¢ equals O deg

Subscripts and Superscript

S, W, T stores, wing, tipstore
,2 =d()/dx,
! =d()/dn

Introduction

ECAUSE modern civil and military aircraft wings are very

often designed to carry external stores, external stores have
gained special importance in the consideration of wing aeroelas-
ticity. In the case of transport aircraft, these are mostly underwing
carried stores, such as large and heavy engines and fuel tanks, or tip
stores, such as winglets. Experimental investigation of the winglet
influence on aeroelastic behavior revealed that most of the detri-
mental effects are due to the pure winglet mass and are not due to
aerodynamic interactions.! Store attachments to fighter aircraft in-
corporate a wide variety of missile configurations, thus leading to
literally hundreds of different store combinations. Very often, the
storesexhibitdramatic changesin mass and inertiapropertiesduring
one single mission due to the launch of missiles.

The tremendous variety of possible store configurations dramat-
ically influences static and dynamic aeroelastic behavior of aircraft
wings, and the study of this problem has received prominence with
the variable sweep fighter aircraft.>* Becauseitis known that pylon-
mounted stores strongly influence dynamic wing characteristics,the
store pitching modes are of special importance from an aeroelastic
point of view.> With store pitching modes being in the proximity
of the wing’s fundamental bending frequency, a critical aeroelastic
coupling of the modes may occur, commonly referred to as wing-
with-stores flutter.

As a result, for a successful design of the next generations of
aerospace vehicles, and to eliminate the danger of the occurrence
of any aeroelastic instability jeopardizing their imposed missions,
it is imperative to have a perfect knowledge of the circumstances
yielding the most critical aeroelastic instability. Toward this end,
as a necessary requirement, modeling of the flight vehicle should
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include the effect of distributed wing and tip stores on a composite
wing.

The possibilities of beneficially tailoring the aeroelastic proper-
ties of wing structures by the employment of composite materials
have been pointed out by recognized aeroelastician$’ and were
demonstrated by the development of the Grumman X-29 forward-
swept wing aircraft. As shown in Refs. 8 and 9, nonclassicaland of-
ten detrimental effects like warping inhibition and transverse shear
flexibility of constituent materials are important parameters that
have to be included in the aeroelastic model.

Structural Modeling

To investigatethe effects of wing-mountedstores on aeroelasticity
of advanced aircraft wings, a comprehensive structural model has
been developed. Based on the concept of a shear deformable plate-
beammodel, the wing structureis idealizedas a laminated composite
plate, each constituentlayer featuring different ply angles, material,
and thickness properties. The total number of the constituentlayers
is denoted by N. The reference plane of the composite structure
is selected to coincide with the plane interface between the two
contiguouslayersr andr + 1 (1 <r <N). Its points are referred to
a Cartesian system of in-plane coordinates (x,, x,). The coordinate
X3 is normal to the plane (x|, x,), with its positive direction upward.
The x; and x, coordinates are referred to as chordwise and spanwise
coordinates,respectively, whereas the reference plane is defined by
x; =0 (Fig. 1).

The equations of motion as well as boundary conditions are
obtained via Hamilton’s variational principle and application of
generalized function theory to consider the spanwise location and
properties of the attached stores exactly. To achieve a realistic rep-
resentation of the store influence on static and dynamic behavior of
the system, static weight and inertia of the attached stores are mod-
eled, yielding the energy functional of a composite wing carrying
external stores:

J=/ Ty =V + T - %+ W) dr M

In Eq. (1) 7 and Vdenote the kinetic and potential energy of
wing W and external stores S, respectively. The work done by the
nonconservative forces, Wc, is obtained from the aerodynamic
forces.From the stationary condition 8J =0, consistentwith Eq. (1)
and adopting the Einstein summation convention, one obtains

n
8J =o=/ dt{(—/qjéUudH/p(g-[—U[)aU[dH/
to T T <.

line of aerodynamic center

lfreestream direction

reference axis

» 77

Fig. 1 Geometry of the swept-composite wing carrying external stores.

where, 0(x,; t) is the elastic twist angle of a wing of rigid cross
sections, whereas h(x,; t) is the vertical displacement (positive up-
ward) of the respective cross section measured at the elastic axis
and located at x; =xo[= x((x,)]. See Refs. 10 and 11 for a detailed
derivation of the three-dimensional displacement components.

For f, =—h, — (x0) , and g, =0,, it results that y;3 = 7,3 =0.
This is consistent with the traditional assumption of an infinite stiff-
ness of the wing structure in transverse shear (Kirchhoff’s theory).

In the case of a straight wing, the pitching angles 0% of the stores
coincide with the wing pitching angle 6. When considering swept
wings of a sweep angle A, the reference coordinate systemis being
rotated with the wing by the sweep angle A (Fig. 1). However, in
this case, note that the stores are always kept aligned parallel to the
airflow. As aresult, the three-dimensionaldisplacementquantitiesof
the stores have to be transformed to the rotated reference coordinate

c; 5[][ dQ)

wing

1
+ Z/ 5D (Xz _ )C;Y)) (_/ p(s) U[(~Y)5U[(~Y) dr + £s)5h(s) _ M(x)(se(s) + m(x)5U3(~Y)>dx2} (2)
s 0

Ts

external stores

In Eq. (2), the superposeddots denote time derivatives. The terms
labeled with a tilde represent prescribed quantities, and the index
s identifies the affiliation of the respective quantity to the external
stores. J{ represents the componentof the body force vector H(per
unit mass), whereas o;; denotes the respective component of the
stress tensor. The three-dimensional displacement components are
given by

Ui = x30(x3; 1) (3a)
U, =up(xp3 1) + x3[fo(x23 1) + x182(x2: 1)] (3b)
Us = h(xy; 1) — (x) — x0)0(x2; 1) (3c)

system to express the store inertia properties in a correct manner.
This transformation yields

Ul(‘y) =x30cos A —up sin A — x3(f, + x18)sin A (4a)
U2<S> =x30sin A + upycos A + x3(fa + x182)cos A (4b)
UY =h—(x —x))[0cos A — fysin A —x,g,sin A] (4c)

By employingthe displacementcomponentsfrom Eqs. (3) and (4)
and performing the indicated mathematical operations, the explicit
form of Eq. (2) for the case of a composite aircraft wing carrying
external stores is
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1
5] =0 =/ dr ( / [A,8uy + AySfo + A388, + (Ay — M) + (As + Doh]dx, + Ag
0

energy functional of the clean composite wing

= D (v = 1) + w1+ xixsi)

+ [xiiy + (33 + K29 sin* A) fo +

+x [xgiiy + (63 + K29 sin? A) 5 +

(133 + x, K29 sin A) g, — K29 @sin A cos A — EVhsin A]6f,

(x1x32 + lelf(‘Y) sin A)g’z - Kﬁ(‘y)é sin A cos A — Eff)ﬁ sin A]5g2

+ [—KIZJ(‘Y) fasinAcos A — lelf<~Y>g‘2 sin A cosA + (x32 + KIZJ(‘Y) cos? A)é

+Eff)}'i cos’ A]59 + (—Eff)ﬁ sinA — xlEff)g'z sinA + Eff)é cos A + fi)éh}

kinetic energy of external stores

+ 2{:50

XY [ MO sin ASf, + x, M sin Adg,

— M cos ASO + ﬂ‘y)5h]

virtual work of external stores aerodynamics

_ x;s))[E;Js) sin A5f2 + xlE;J‘Y) sin A5g2 -

+ Z m®gs;, (xz

EY cos ASO + 5h (5)

potential energy of external stores

where, E® is the distance between the center of gravity of the store
and the w1ng elastic axis and K(Y) is the pitching radius of gyration
of the store about its center of grav1ty The coefficients A;-Ag are
displayedin Refs. 10 and 11 and, therefore, are not recorded here.

For the sake of completeness, Eq. (5) also displays the virtual
work done by the nonconservative aerodynamic forces acting on
the external stores. However, as it has been pointed out by Turner,!?
cases where store aerodynamicssignificantly influence the aeroelas-
tic characteristicsof the configurationare very rare. Therefore, store
aerodynamicswill notbe consideredin the following developments.

By collecting the terms associated with the respective variations
Sy, 8f>, 08,2, 60, and Sh, and having in view that these variations
have to be arbitrary and independent, Eq. (5) yields the equations of
motion as well as the boundary conditions. From the stationary con-
dition 6/ =0, which concerns each instantbelonging to the interval
[#y, t,], the equations of motion result as

Sy Ay + 250 Xy — X(Y))[—m(y)(uz +x3 /5 + x1x3g2)] =0
s (62)

Ofr: Ay + Z 5D xé‘y)){—m(‘y) [x3ii2 + (x32 + KZJ(‘Y) sin? A)f2
+ G‘l)% + x KZ(Y) sin A)gz KZ(Y)Q sin A cos A — E(Y)h sin A]
+ MY sin A +mYgES sin A} =0 (6b)

6g2: Az + 250 (Y)

+ (x + K sin A)f2

{—m(‘y) [)C3 lin
(x1x32 +x, K% sin A)g’z
— K2fisinAcos A — EPhsinA]
+ MV sinA + mVgEY sinA} =0 (6¢)

56: A4+25D ) -

—x Kp“)g'z sin A cos A + (k3 + K2 cos? A)é

m® [—KIZJ(‘Y) frsin A cos A

+ Eff)}'i cos? A] — M9 cosA — m(‘Y)gEff) cosA} =0 (6d)

Sh: A5+25D

+ E(Y)Qcos/\ + h) + L9 4 ;® ] =0 (6e)

(Y) [ m(”(—E(f) fasinA — x1 EY g, sin A

It should be stressed that these equations of motion, obtained
from a plate-beam model, are similar to the ones obtained for thin-
walled beam models.”> Because only the stiffness quantities are
affected by the physical realization of the structure, all structural
configurations, including plate-beam models, thin-walled beams,
as well as the implementation of different types of stiffeners in the
wing, can be investigated using the same set of equations. This
was conjectured by several authors.!*!> The modified plate-beam
models (so-calledbox-beam models) employed by these authors are
an intrinsic feature of the present structural model.

In addition, the geometrical and statical boundary conditions at
the wing root and tip are obtained. For a cantilevered wing, the
boundary conditions at the root (x, =0) are purely geometricaland
expressed as

Uy =i, (7a)
fH=h (7b)
& =8 (7¢)
0=0 (7d)
h=h (7e)

In the case of a clean wing tip, that is, no tip store, the boundary
conditions at the wing tip (x, =) are purely statical:

Suy: Ty = T,9° (8a)
o T =T " (8b)
8y Ty =T5" (8¢)
50: TI(ZU,I) _ T2(31’0) — 7"«1(2071) _ T2(31,0) (8d)
Sh: T =T, (8¢)
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When considering a store located at the wing tip, the boundary
conditions at x, =/ change to kinetic ones, thus taking into account
the mass, inertia properties, and aerodynamics of the tip store:

Suy: TZ(ZO’O) = —m(T)(L'iz + x3fé + x1x382) (9a)

Sfy: TV = —m™D [x3ii2 + (x32 + KD sin’ A) £
+ (x1x32 +x, K, sin A)g’z - Kﬁmé sin A cos A
- EDhsin Al + M sin A +mDgED sin A (9b)
8¢ T =x, {—m(T)[x3L'i2 + (x32 + KT sin® A)f2
+ (x1x32 +x, K sin A)g’z - Kf,mé sin A cos A
- E;}T)}'i sin A] + MDsinA + mDgED sinA} (9¢)

. (0.1 (1,0) 0,00 _ T AT) £ o
80: T, =T, + x Ty = —m! )[—Kp( ) f, sin A cos A

- leffT)g'z sin A cos A + (x32 + KIZJ(T) cos? A)Q
+ E;}T)}'i cos’ A] - MDcosA - m(T)gEfJT) cos A (9d)
Sh: T9O = —m™ (—E;P fasin A—x E(7 g, sin A

+Ef,T)écosA + }i) + D4 mTg (9e)

Equations (6-9) represent the equations governing the aeroelas-
tic equilibrium of advanced composite aircraft wings laminated of
anisotropic layers and exhibiting transverse shear flexibility and
warping inhibition. In addition, they include arbitrarily distributed
external stores in the wing’s spanwise and chordwise directions, as
well as the aerodynamics of the stores. These equations, expressed
in terms of the unknown displacementquantitiesu,(x; t), f2(x2; 1),
82(x25 1), O(x5; 1), and h(x,; t), yield a 10-order governing system
of ordinary differential equations.

On discarding the influence of the in-plane components of body
forces FZ(O’O), as well as in-plane rotatory inertia terms, that is, terms
1004, JOD £ and IV g, the displacementquantity u, (x,; f) can
be expressed in terms of f5(x5; 1), g2(x; 1), O(x5; t), and h(x,; 1),
and, thus, be eliminated from the system. By this way, the system
can be equivalentlyreduced to an eighth-orderdifferential equation
system in terms of the unknowns f5(x; 1), g2(x5; 1), 0(x5; t), and
h(xy;1).

Constitutive Equations

The constitutiveequations relating the generalized stress couples
T[j.'"’") with the strain measures have been obtained in Ref. 10. To
establish the study of the effects of external stores within the con-
text of aeroelastic tailoring, the composite wing is chosen to be
fabricated of a finite number N of homogeneouslayers. It is further
assumed that the material of each layer is linearly elastic and that
the bonding between the layers is perfect. The three-dimensional
constitutive equations for a generally orthotropic elastic material
can be expressed as

o On Qn Qi O 0 O &1
O O 0n 0Ox 0 0 Q2 €2
G _ Oz 0O 0Os _0 _0 036 €33 (10)
023 0 0 0 Qu Os O Y23
013 0 0 0 Qs 055 O 713
12 O Oy 0% O 0 O Yz

where Q;; are the transformed elastic coefficients associated with
the kth layer in the global coordinate system of the wing structure,

and y;; =2¢;;, where i #J and g;; are the components of the strain
tensor.

Numerical Solution of the Static Aeroelastic System

As stated, the extended Galerkin method has been applied for a
numerical solution of the problem. The displacement field is repre-
sented as the sum of a finite number of mode shape functions as

n

L0, (). 0. AT =Y [F;. G, T, H1T -/ (11)

j=1

where 1 is the nondimensional spanwise coordinate (n=x,/1),
whereas the constant factors F;, G;, T;, and H; are the modal
amplitudes.

To establish trends, strip theory aerodynamics have been em-
ployed. However, note that application of the extended Galerkin
method allows a three-dimensionalintegration of the aerodynamic
forces and moments along the wing span. Therefore, the sectional
lift-curve slope and aerodynamic center remain arbitrary and may
vary from section to section.

For the static case, the aerodynamic terms Land M representing
the sectionallift and aerodynamic torsional moment!® are expressed
as

I(U) = q,¢cay 0k (12a)
M) = quceapbey (12b)

where g, =pyV?/2 =g cos® A is the dynamic pressure component
normal to the leading edge and ag= 27R/ (AR + 4cos A) is the
lift-curve slope coefficient corrected to include the effects of a finite
wing span and the wing sweep angle A. In Eq. (12), 0.4 is the
effective sectional angle of attack given by

10h
Qeff =90+9—__tan[\ (13)
I on

With 6, denoting the angle of attack of the rigid-wing structure,
Eq. (13) including aerodynamic bending/twist coupling describes
the well-known wash-in and wash-out effects of swept-forward
and swept-back wing configurations, respectively. By replacing
Egs. (11-13) into Eq. (5), an inhomogeneous matrix equation de-
scribing the static aeroelastic response of the wing is obtained:

[A]-[s] =1r] (14)

In the static case, the matrix A is composed of the (real) stiffness
matrix of the wing but contains also the (real) aerodynamic influ-
ence quantities in terms of the dynamic pressure g,, whereas
s represents the solution vector with s =[Fy,..., F,,Gy,...,
G, T, ...,T,,H,...,H,]".The right-hand vector r incorporates
the inhomogeneous part of the aerodynamic forces associated with
the angle of attack of the rigid wing and the influence of the external
stores.

To obtain the divergence pressure, the determinant of matrix A
has to be calculated, yielding a characteristic polynomial in g,.
The smallest positive value of g, fulfilling the conditiondet A =0
represents the divergence pressure (g, )qy. Because for the static
case, there is no contribution of the external stores to the matrix
A, it becomes now evident that the influence of the stores on the
divergence speed of the wing is immaterial. Experimental results
obtained by Runyan and Watkins!” reveal an identical behavior.

Numerical Solution of the Dynamic Aeroelastic System

For simulation of the dynamic aeroelastic system, the unknown
functions are represented as

Lfo(m; 1), g2(m; 1), O(m; 1), h(m; D)]F

=Z[Fj,Gja Tj, Hj]T'Uj'e[m (15)

j=1
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For the dynamic case, the aerodynamicterms Land M represent-
ing the sectionallift and aerodynamictorsionalmoment'® associated
with an incompressible flowfield are expressed as

h 1 oh 100
Lin,t) = —npa*b®y =L, + =—Lyy + OLyg + b=—L, o
b [ on [ on

(16)

h 1 oh 100
M, t) = npa*b*y =My, + =— My + OMyy + b——Myy
b [ on [ on

(17
InEqs.(16)and(17), Ly, Ly, -
coefficients.!®

For the Theodorsen function C(k), the approximation'® was used,
namely,

C(k) = F(k) + iG(k)
_0.021573 + 0.210400k + 0.512607k> + 0.500502k
T 0.021508 + 0.251239% + 1.035378k> + K

.0.001995 + 0.327214k + 0.122397k + 0.000146k*
—i
0.089318 + 0.934530k + 2.481481k? + k3

.» Mgy representthe aerodynamic

(18)
where k is
k = wb/V, = wb/Vcos A (19)

Thisrepresentationfinally leadsto a complex eigenvalue problem
expressed in matrix form as

[A] - &’[B] =0 (20)

where A is the (real) stiffness matrix of the wing and B is the (com-
plex) matrix representing the inertia terms of wing and external
stores as well as the complex aerodynamic parameters of the wing.
The real partof the complex valued quantity wrepresentsthe circular
frequency of the oscillation, whereas its imaginary part constitutes
the damping factor o.

The implemented solution methodologyis based on the inversion
of the complex B and subsequentcalculationof complex eigenvalues
and eigenvectors of the obtained system matrix AB™'. The flutter
speed is calculated in a fast converging iteration process rendering
zero the imaginary (damping) part of the complex eigenvalues.

Validation

To verify the accuracy of the flutter analysis, a number of com-
parisons for several test cases were conducted. The first comparison
was made with Goland’s cantilevered wing of R =6.67 as given
in Ref. 19 and the subsequently appended correction of the flutter
results in Ref. 20. The results reveal that the predictions for flut-
ter speed and flutter frequency provided by the present approach,
namely, 493.6 km/h and 12.02 Hz, are in excellent agreement with
Goland’s exact results (494 km/h and 11.25 Hz).

As another test case, the example of a straight aircraft wing of
AR =6.16 with attached tip weights, as given in Ref. 20, was in-
vestigated. In the calculations, two different chordwise positions
of the center of gravity of the tip store were considered, namely,
& = E;,T) /¢ =0.0(case ) and &7 =0.1 (case II). Note that the orig-
inal flutter investigationby Goland and Luke also included the free-
body motion of the rigid fuselage, which is not subject of the present
calculations. Nevertheless, the prediction of flutter speed and fre-
quency of the first torsional mode for cases I and Il is very accurate.

In both cases, flutter occurs in the classical way as binary wing
bending/torsion flutter due to frequency coalescence and vanishing
aerodynamic damping of the first torsional mode at a flight speed
of 1055 km/h. In Refs. 15 and 21, it was observed that the first
bending branch interacts with the rigid-body mode and flutters at
an even lower speed (994 km/h). Because the free-body motion of
the fuselage was discarded in this investigation, there is no such

interactionand, as a consequence, the first torsional mode yields the
lowest flutter speed.

In the present calculations, the warping inhibition of the can-
tilevered wing structure is taken into account. For this reason, flut-
ter of the second bending mode, which was observed by Housner
and Stein'® to be the most critical mode of instability (943 km/h),
occurs only at very high air speeds.?! The inclusion of the warping
terms does not influence the stability behavior of the first bending
and torsional modes.

Numerical Illustrations

To study the effects of external stores within the context of aero-
elastic tailoring, the wing structureis consideredto be manufactured
of agraphite-epoxycomposite material. In this context, the ply angle
¢ represents the counterclockwise angle of rotation of the laminate
with respect to the x; axis of the wing. For a single-layer composite
wing, the material properties are given in Table 1.

The effect of the ply angle ¢ on the divergence speed is shown in
Fig. 2 for a swept-back, swept-forward, and straight wing. Figure 2
shows the normalizeddivergencespeed(g,)p/(q,)} vstheply angle
@, where (¢,)5 =(ga)pla =p=0. It can be seen that, with increasing
forward sweep, the range of ply angles for which divergence is
not critical is decreased. Figure 2 also highlights the effect of the
transverse shear flexibility of the material.

Free vibration and flutter of the wing are examined for different
combinations of wing and tip stores whose nondimensional proper-
ties are given in Table 1.

The free vibration behavior of wings carrying external stores and
exhibiting nonclassical effects such as transverse shear flexibility
and warping inhibition can be obtained as a byproduct of the dy-
namic analysis described in the preceding section. For this purpose,
the airflow density is set equal to zero, rendering the inertia matrix
B real and, therefore, stating a self-adjointeigensystem with purely
real eigenvalues. Figure 3 shows the influence of warping restraint
on the free vibration characteristics of the wing.

Table1 Structural and material properties
of wing and external stores

Parameter Value
E, 30-10° psi
E> 0.75-10° psi
G 0.45-10° psi
G 0.37-10° psi
R=Ei/G3 81.081
Via 0.25
p 14.3 X 10° Ib- s*/in*
Uw = m(wingstore)/m(wing) 03
ur = m(lipstore)/m(wing) 0.1
ey = E](Jwingstore)/c —0.4
er = E](Jupstore)/c —04
nw = x;wingstore)/l 0.5

1.5

1
@Wp
@)
0.5
-60°
o A=45°

0 20 40 60 80 100 120 140 160 180
Ply angle ¢ [deg]

Fig. 2 Normalized divergence speed vs ply angle for swept and straight
wings (R = 81, graphite epoxy and R — 0, Kirchhoff’s theory).
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0 20 40 60 80 100 120 140 160 180
Ply angle ¢ [deg]

Fig. 3 Influence of warping restraint on the three lowest eigenfrequen-
cies for a straight wing (FW = free warping and WR = warping restraint).

80
clean wing —
70+ |A=0° tipstor — —
wingstore - - - -
wing and tip store — - -

0 20 40 60 80 100 120 140 160 180
Ply angle ¢ [deg]

Fig. 4 Influence of external stores on the three lowest eigenfrequencies
for a straight wing.

80
clean wing —
70 |A=45° tipstor ——
i ==
60 wing and tip store — - -
f
[Hz]

0 20 40 60 80 100 120 140 160 180
Ply angle ¢ [deg]

Fig. 5 Influence of external stores on the three lowest eigenfrequencies
for a swept-back wing (A = 45 deg).

As shown in Fig. 4, vibration frequencies are lowered due to an
increase of the generalized mass of the system by attaching exter-
nal stores. However, because of the chordwise offset of the center
of gravity of the stores, the symmetry of the vibration behavior
with respect to the ply angle is destroyed. As can also be inferred
from Fig. 4, the node lines of the higher-order vibrational modes
are shifted with respect to changes in the ply angle orientation, as
well as by increasing the generalized mass.!! Figure 5 shows the
free vibration behavior for a 45-deg swept-back wing of the same
structural configuration. The trends shown in Figs. 4 and 5 are con-
sistent with the ones experimentally and theoretically obtained by
Lee and Lee.?

For anonzeroairflow density, matrix B becomescomplex,render-
ing the eigenvalues of the system complex quantities. Figures 6 and
7 show flutter speed and flutter frequency, respectively, of a clean
wing vs the ply angle ¢ for differentsweep angles A. As it is shown,

0 10 20 30 40 S0 60 70 80 90

Ply angle ¢ [deg]

Fig. 6 Effect of ply angle ¢ and sweep angle A on flutter speed pa-
rameter A\F = VF/bwh including transverse shear flexibility.
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Fig. 7 Effect of ply angle o and sweep angle A on flutter frequency
parameter QOF = wF/wh including transverse shear flexibility.
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Fig. 8 Effect of ply angle ¢ on flutter speed parameter A\F = VF/bwh
for a straight wing (influence of external stores).

the maximum flutter speed of the wing is obtained for ply angles in
the vicinity of 30 deg and is decreasingrapidly by approaching( deg
as well as 90 deg. This trend is in perfect agreement with results
obtained by Housner and Stein'’ using a finite difference method.

To highlightthe effect of the transverse shear flexibility of the ma-
terial on the flutter behavior of the wing, Figs. 6 and 7 also show the
results obtained for the assumption of a transversely rigid material
(Kirchhoff theory, R — 0). As can be seen, neglecting the trans-
verse shear flexibility leads to an overestimation of flutter speeds
and flutter frequencies for all ply-angle orientations.

The influence of differentcombinations of wing and tip stores on
flutter speed and frequency is shown in Figs. 8 and 9, respectively.
Depending on the ply angle orientation, the presence of external
stores may lead to a decrease or increase of the flutter speed with
respectto the clean wing. Moreover, as can be seen from Figs. 8 and
9, changing the configuration of the external stores may even lead
to a change in the critical flutter mode for certain ply angles. For the
structural configuration shown in Figs. 8 and 9, the attachment of a
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Fig. 9 Effect of ply angle o on flutter frequency parameter QOF =
wF/wh for a straight wing (influence of external stores).
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Fig. 10 Imaginary (damping) part & of the complex eigenvalues of
modes 2 and 3 vs flight speed parameter X = V/bwh at ply angle orienta-
tions near the discontinuity of the flutter boundary for a straight wing
carrying a tip store.

tip store renders mode 3 to become the more critical flutter mode for
ply angles between 6 and 20 deg, leading to a discontinuity of the
flutterboundaryin the vicinity of these ply angles. Asa consequence,
the flutter frequency jumps to the much higher frequency range
of mode 3, whereas for all other ply angles and external stores
combinations, mode 2 is the most critical flutter mode.

The discontinuity of the flutter boundary in the vicinity of a ply
angleof ¢ =6 deg canbe explainedby the existence of ahump mode
(mode 3) for the wing carryinga tip store (Fig. 10). The critical flutter
mode changes from mode 2 to mode 3 as ¢ is increased from 5 to
6 deg due a change in sign (from minus to plus) of the imaginary
(damping) part & of the complex eigenvalue of mode 3 for a flight
speed parameter of A =19.5. A similar variation of the flutter speed
vs the laminate ply angle was observed by Housner and Stein.!?
Notice that, for ¢ =6 deg, mode 2 of the clean wing undergoes
instability at a lower speed than mode 2 of the wing carrying a tip
store. Nevertheless, for the wing with tip store, instability of mode
3 occurs at an even lower flight speed.

Note that this discontinuity of the flutter boundary occurs due to
a change of the external stores configuration of the wing. As men-
tioned in the Introduction,such changes may occur during flight, for
example, due to the launching of missiles or jettisoning of external
tanks. Therefore, toitis very importantto consider the possibility of
different combinations of external stores attached to the wing also
during ply-angle optimization for aeroelastic tailoring.

Figures 11 and 12 indicate that the observed discontinuity in the
flutter speed does not occur for a 45-deg swept-back wing. The
reason for this behavior is that, for the straight wing, the pitching
modeof the tip store coupleswith mode 3 of the wing, thus producing
the observed hump mode. To keep the stores aligned parallel to the
airflow for the 45-deg swept-back wing, the store inertia properties
are being transformed into the wing coordinate system [Eqs. (4a—
4¢)]. As a result, the interaction of the store pitch with mode 3
becomes weaker, causing the hump mode to disappear. Therefore,
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Fig. 11 Effect of ply angle ¢ on flutter speed parameter A\F = VF/bwh
for a 45-deg swept-back wing (influence of external stores).
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Fig. 12 Effect of ply angle ¢ on flutter frequency parameter QF =
wF/wh for a 45-deg swept-back wing (influence of external stores).

in this case, mode 2 yields the most critical flutter conditions for all
ply-angle orientations.

Conclusions

A well-encompassing structural model of aircraft wings com-
posedof advanced composite anisotropic materials exhibiting trans-
verse shear flexibility and warping inhibition as well as incorporat-
ing arbitrarily distributed stores was developed. This model reveals
its efficiency in approachingthe static and dynamic aeroelasticity of
complex wing/store configurations. Results obtained for Goland’s!®
and for Goland and Luke’s?® wings via extended Galerkin’s method
show very good agreement with solutionsgiven by otherauthorsand
obtained via completely different approaches to the problem, such
as analytical solutions and finite difference or finite element meth-
ods. The capability of the model to predictaccurately flutter and free
vibrationbehaviorof wings carryingexternal stores is underlined by
comparison with theoretical and experimental results for standard
unswept metallic wings and composite wings, respectively.

The assumption of a nonshear deformable wing structure (R =
E,/G;— 0) overestimates divergence and flutter speeds, as well
as flutter frequencies. For this reason, to obtain reliable results for
static and dynamic aeroelasticity of advanced composite aircraft
wings, transverse shear flexibility has to be taken into account. Be-
cause wing divergence as a phenomenonis only influenced by wing
stiffness parameters, the effect of external stores on the divergence
speed has been shown to become immaterial.

The implications of external stores on flutter speed of aeroelas-
tically tailored composite wings can be very complex, depending
on the wing/store configuration, because they can be of beneficial
or detrimental nature. It has been shown that different store com-
binations may lead to changes of the critical flutter modes and to
discontinuities in the flutter boundary for certain ply angle orien-
tations. In the observed case, increasing the wing sweep from 0O to
45 deg reduces the coupling of the store pitching mode with wing
mode 3. As a result, the hump mode causing a discontinuity in the
critical flutter speed for the straight wing disappears for the 45-deg
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swept-backwing. Therefore, toidentifythe critical flutter conditions
for a composite aircraft wing carrying external stores, it becomes
imperative to consider different store configurations already in the
preliminary design stages.
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